Kamis, 30 Juni 2011

('') TiPs bELajaR fisika ('')

Fisika itu Mudah Lhoo... !!!



Dilakukan secara berurutan ya….

1. Pahami Konsep
Ini syarat utama dan tujuan kita belajar fisika. Konsep itu apa ? coba baca materi fisika di blog ini. Penjelasan panjang lebar dan bertele-tele mengenai suatu pokok bahasan itu adalah konsep (yang bukan rumus). Sederhananya seperti itu… ingat ya, ibarat perang, konsep itu amunisi alias peluru dkk… kalau anda tidak punya amunisi, anda pasti kalah. Kalau anda belum paham konsep, anda belum belajar fisika. Dan tentu saja anda akan kalah dalam pertempuran melawan soal-soal fisika.
2. Pahami penurunan rumus
Coba pahami bagaimana suatu rumus diturunkan. Contoh : rumus Energi Potensial EP = mgh itu asalnya dari mana ? Semuanya telah saya jelaskan di setiap materi fisika yang dimuat di blog ini… sekali lagi, saya meminta anda memahami proses penurunan rumus. bukan menghafal… tujuannya agar anda tahu dari mana asal rumus tersebut.
3. JANGAN HAFAL RUMUS
Sebaiknya anda jangan menghafal rumus, apapun itu. Memang kadang kepada anda tidak dijelaskan konsep fisika dengan baik, tapi hanya disodorkan rumus. Secara tidak langsung anda disuruh menghafal rumus. anda kena batu ketika menemukan soal yang tidak cocok dengan satu rumus pun. Padahal anda punya banyak koleksi rumus. Saya menulis berdasarkan pengalaman saya selama bergulat dengan fisika sejak SMP. Kalau anda mau belajar fisika dengan saya, patuhi aturan emas ini. Jangan Hafal Rumus ! percuma anda hafal rumus tapi tidak mengerti konsep fisika… Rumusnya dipahami saja.
4. Sering kerjakan latihan soal
Mengapa saya meminta anda mengerjakan latihan soal sesering mungkin ? Kalau anda sering mengerjakan soal fisika, dengan sendirinya rumus diingat. Anda juga semakin memahami konsep fisika. Ingat waktu pertama kali belajar naik sepeda atau sepeda motor ? rasanya sulit sekali… bahkan mungkin jatuh berulangkali… sama saja dengan fisika. Jika anda sering latihan soal, jam terbang anda makin tinggi. Kerjakan soal dari yang termudah ya.. setelah soal yang mudah ditaklukan, baru lanjut ke soal yang sulit.


^% TETAP YAKIN DENGAN KEMAMPUAN YANG KITA MILIKI... DAN SLALU BERSEMANGAT MENGGAPAI IMPIAN...! ^HORAS^

Senin, 27 Juni 2011

Pesan fisika ....!




kata orang ilmu fisika itu sangat sulit jika diliat dari sudut pandang mana pun. Walau guru yang mengajar sehebat professor, seahli fisikawan, sehebat Sir Isac Newton.Ilmunya itu tak kan bisa lengket dalam otak yang kebal ini.....
tapi percayalah sekebal apa pun otak itu,, sebeku apa pun hati itu untuk menerima pelajaran ilmu fisika. Ia insyaALLAH akan luluh juga jika kita mau terus berusaha untuk mempelajarinya hingga titik darah penghabisan,,, cieeeeeeleee ( lebbay .... )




~ KritiK n saran ~

Bisa anda kirimkan melalui email-Qu : ilsasyabira@gmail.com

~) Puisi (~


Ooooh fisika ….
Dalam lingkar fisika ku berpijak
Menjalani semua hal yang berhubungan dengannya
Walau sering pahit yang ku dapat
Tapi tetap ku coba tuk mengenalnya lebih dalam
Hingga ku yakin ku bisa mengerti dan paham tentangnya

% Berita Fisika %



belum lama berselang, tepatnya tanggal 5 Juni yang lalu, suatu berita besar iptek muncul dari sebuah konperensi fisika “Neutrino 98″ yang berlangsung di Jepang. Neutrino, salah satu partikel dasar yang jauh lebih kecil daripada elektron, ternyata memiliki massa, demikian laporan dari suatu tim internasional yang tergabung dalam eksperimen Super-Kamiokande. Tim ahli-ahli fisika yang terdiri dari kurang lebih 120 orang dari berbagai negara termasuk AS, Jepang, Jerman, dan Polandia tersebut melakukan penelitian terhadap data-data yang dikumpulkan selama setahun oleh sebuah laboratorium penelitian neutrino bawah tanah di Jepang.

Jika laporan ini terbukti benar dan dapat dikonfirmasi kembali oleh tim lainnya maka akan membawa dampak yang sangat luas terhadap beberapa teori fisika, terutama
pembahasan mengenai interaksi partikel dasar, teori asal mula daripada alam semesta ini serta problema kehilangan massa (missing mass problem) maupun teori neutrino matahari.

Neutrino, atau neutron kecil, adalah suatu nama yang diberikan oleh fisikawan dan pemenang hadiah Nobel terkenal dari Jerman: Wolfgang Pauli. Neutrino adalah partikel yang sangat menarik perhatian para fisikawan karena kemisteriusannya. Neutrino juga merupakan salah satu bangunan dasar daripada alam semesta yang bersama-sama dengan elektron, muon, dan tau, termasuk dalam suatu kelas partikel yang disebut lepton. Lepton bersama-sama dengan enam jenis partikel quark adalah pembentuk dasar semua benda di alam semesta ini.



Ditemukan secara eksperimental pada tahun 1956 (dalam bentuk anti partikel) oleh Fred Reines (pemenang Nobel fisika tahun 1995) dan Clyde Cowan, neutrino terdiri dari 3 rasa (flavor), yakni: neutrino elektron, neutrino mu dan neutrino tau. Neutrino tidak memiliki muatan listrik dan selama ini dianggap tidak memiliki berat, namun neutrino memiliki antipartikel yang disebut antineutrino. Partikel ini memiliki keunikan karena sangat enggan untuk berinteraksi. Sebagai akibatnya, neutrino dengan mudah dapat melewati apapun, termasuk bumi kita ini, dan amat sulit untuk dideteksi.

Diperkirakan neutrino dalam jumlah banyak terlepas dari hasil reaksi inti pada matahari kita dan karenanya diharapkan dapat dideteksi pada laboratorium di bumi. Untuk mengurangi pengaruh distorsi dari sinar kosmis, detektor neutrino perlu ditaruh di bawah tanah. Dengan mempergunakan tangki air sebanyak 50 ribu ton dan dilengkapi dengan tabung foto (photomultiplier tube) sebanyak 13 ribu buah, tim Kamiokande ini menemukan bahwa neutrino dapat berosilasi atau berganti rasa. Karena bisa berosilasi maka disimpulkan bahwa neutrino sebenarnya memiliki massa.

Penemuan ini sangat kontroversial karena teori fisika yang selama ini kerap dipandang sebagai teori dasar interaksi partikel, yakni disebut teori model standard, meramalkan bahwa neutrino sama sekali tidak bermassa. Jika penemuan neutrino bermassa terbukti benar maka boleh jadi akan membuat teori model standard tersebut harus dikoreksi.

Penemuan neutrino bermassa juga mengusik bidang fisika lainnya yakni kosmologi. Penemuan ini diduga dapat menyelesaikan problem kehilangan massa pada alam semesta kita ini (missing mass problem). Telah sejak lama para ahli fisika selalu dihantui dengan pertanyaan: Mengapa terdapat perbedaan teori dan pengamatan massa alam semesta? Jika berat daripada bintang-bintang, planet-planet, beserta benda-benda alam lainnya dijumlahkan semua maka hasilnya ternyata tetap lebih ringan daripada berat keseluruhan alam semesta.



Para ahli fisika menganggap bahwa terdapat massa yang hilang atau tidak kelihatan. Selama ini para ahli tersebut berteori bahwa ada partikel unik yang menyebabkan selisih massa pada alam semesta. Namun teori semacam ini memiliki kelemahan karena partikel unik yang diteorikan tersebut belum pernah berhasil ditemukan.

Dari hasil penemuan tim Kamiokande ini dapat disimpulkan bahwa ternyata partikel unik tersebut tidak lain daripada neutrino yang bermassa.


Menurut teori dentuman besar (Big Bang) alam semesta kita ini bermula dari suatu titik panas luar biasa yang meledak dan terus berekspansi hingga saat ini. Fisikawan Arno Penzias dan Robert Wilson (keduanya kemudian memenangkan hadiah Nobel fisika tahun 1978) pada tahun 1965 menemukan sisa-sisa gelombang mikro peninggalan dentuman besar yang sekarang
telah mendingin hingga suhu sekitar 3 Kelvin. Namun salah satu hal yang masih diperdebatkan adalah masalah ekspansi alam semesta itu sendiri. Apakah hal ini akan terus menerus terjadi tanpa akhir? Penemuan neutrino bermassa diharapkan akan bisa menjawab pertanyaan yang sulit ini.

Bayangkan suatu neutrino yang sama sekali tidak bermassa, seperti yang diperkirakan selama ini. Gaya gravitasi tentu tidak akan berpengaruh sama sekali pada partikel yang tidak memiliki berat. Namun apa yang terjadi jika neutrino ternyata memiliki berat? Dalam jumlah yang amat sangat banyak neutrino-neutrino ini tentu akan bisa mempengaruhi ekspansi alam
semesta. Tampaknya ada kemungkinan ekspansi alam semesta suatu saat akan terhenti dan terjadi kontraksi atau penciutan kembali jika ternyata neutrino memiliki massa.

Terakhir masih ada satu lagi problem fisika yang akan diusik oleh hasil penemuan ini yaitu problem neutrino matahari, dimana terjadi selisih jumlah perhitungan dan pengamatan neutrino yang dihasilkan oleh matahari kita.

Untuk keabsahan penemuan ini tim internasional dari eksperimen super Kamiokande dalam laporannya juga mengajak tim-tim saintis lainnya untuk mengkonfirmasi penemuan mereka. Namun menurut pengalaman di masa lalu, laporan osilasi neutrino dan neutrino bermassa selalu kontroversi dan jarang bisa dikonfirmasi kembali.
sumber: http://www.fisikanet.lipi.go.id/

^* ILMU FISIKA dalam Al-QUR'AN *^


"Maha Suci Tuhan yang telah menciptakan pasangan-pasangan semuanya, baik dari apa yang ditumbuhkan oleh bumi dan dari diri mereka maupun dari apa yang tidak mereka ketahui." (Al Qur'an, 36:36)
Meskipun gagasan tentang "pasangan" umumnya bermakna laki-laki dan perempuan, atau jantan dan betina, ungkapan "maupun dari apa yang tidak mereka ketahui" dalam ayat di atas memiliki cakupan yang lebih luas. Kini, cakupan makna lain dari ayat tersebut telah terungkap. Ilmuwan Inggris, Paul Dirac, yang menyatakan bahwa materi diciptakan secara berpasangan, dianugerahi Hadiah Nobel di bidang fisika pada tahun 1933. Penemuan ini, yang disebut "parité", menyatakan bahwa materi berpasangan dengan lawan jenisnya: anti-materi. Anti-materi memiliki sifat-sifat yang berlawanan dengan materi. Misalnya, berbeda dengan materi, elektron anti-materi bermuatan positif, dan protonnya bermuatan negatif. Fakta ini dinyatakan dalam sebuah sumber ilmiah sebagaimana berikut:
"…setiap partikel memiliki anti-partikel dengan muatan yang berlawanan … … dan hubungan ketidakpastian mengatakan kepada kita bahwa penciptaan berpasangan dan pemusnahan berpasangan terjadi di dalam vakum di setiap saat, di setiap tempat."
Semua ini menunjukkan bahwa unsur besi tidak terbentuk di Bumi, melainkan dibawa oleh meteor-meteor melalui ledakan bintang-bintang di luar angkasa, dan kemudian "dikirim ke bumi", persis sebagaimana dinyatakan dalam ayat tersebut. Jelas bahwa fakta ini tak mungkin diketahui secara ilmiah pada abad ke-7, di saat Al Qur'an diturunkan. (http://www.2think.org/nothingness.html, Henning Genz – Nothingness: The Science of Empty Space, s. 205)


sumber: http://www.fisikanet.lipi.go.id/

~ RELATIVITAS WAKTU DALAM FISIKA DAN AL-QUR'AN +


Kini, relativitas waktu adalah fakta yang terbukti secara ilmiah. Hal ini telah diungkapkan melalui teori relativitas waktu Einstein di tahun-tahun awal abad ke-20. Sebelumnya, manusia belumlah mengetahui bahwa waktu adalah sebuah konsep yang relatif, dan waktu dapat berubah tergantung keadaannya. Ilmuwan besar, Albert Einstein, secara terbuka membuktikan fakta ini dengan teori relativitas. Ia menjelaskan bahwa waktu ditentukan oleh massa dan kecepatan. Dalam sejarah manusia, tak seorang pun mampu mengungkapkan fakta ini dengan jelas sebelumnya.
Tapi ada perkecualian; Al Qur'an telah berisi informasi tentang waktu yang bersifat relatif! Sejumlah ayat yang mengulas hal ini berbunyi:
"Dan mereka meminta kepadamu agar azab itu disegerakan, padahal Allah sekali-kali tidak akan menyalahi janji-Nya. Sesungguhnya sehari di sisi Tuhanmu adalah seperti seribu menurut perhitunganmu." (Al Qur'an, 22:47)
"Dia mengatur urusan dari langit ke bumi, kemudian (urusan) itu naik kepada-Nya dalam satu hari yang kadarnya adalah seribu tahun menurut perhitunganmu." (Al Qur'an, 32:5)
"Malaikat-malaikat dan Jibril naik (menghadap) kepada Tuhan dalam sehari yang kadarnya limapuluh ribu tahun." (Al Qur'an, 70:4)
Dalam sejumlah ayat disebutkan bahwa manusia merasakan waktu secara berbeda, dan bahwa terkadang manusia dapat merasakan waktu sangat singkat sebagai sesuatu yang lama:
"Allah bertanya: 'Berapa tahunkah lamanya kamu tinggal di bumi?' Mereka menjawab: 'Kami tinggal (di bumi) sehari atau setengah hari, maka tanyakanlah kepada orang-orang yang menghitung.' Allah berfirman: 'Kamu tidak tinggal (di bumi) melainkan sebentar saja, kalau kamu sesungguhnya mengetahui'." (Al Qur'an, 23:122-114)
Fakta bahwa relativitas waktu disebutkan dengan sangat jelas dalam Al Qur'an, yang mulai diturunkan pada tahun 610 M, adalah bukti lain bahwa Al Qur'an adalah Kitab Suci.


sumber: http://www.fisikanet.lipi.go.id/

' Hubungan cahaya dalam al-qur'an '


Kita semua pasti pernah mendengar cahaya dalam ilmu fisika, ilmu fisika tentang cahaya itu bukan hal yang tabu untuk kita dengar dan pelajari bagi mereka yang pernah duduk di bangku sekolah. Tapi walaupun kita tidak belajar tentang ilmu fisika, dalam kehidupan pun kita sering mengaplikasikan fisika dalam kehidupan sehari-hari.


Salah satu nama surat dalam al Qur’an adalah an Nuur yang berarti “cahaya”. Cahaya bukan merupakan fenomena aneh dalam kehidupan sehari-hari. Apalagi yang sudah mempelajari IPA dari sejak SD, telah mengerti sifat-sifat cahaya ini. Lalu al Qur’an memuat surat “cahaya”, apa keistimewaannya?
35. Allah (Pemberi) cahaya (kepada) langit dan bumi. Perumpamaan cahaya Allah, adalah seperti sebuah lubang yang tak tembus, yang di dalamnya ada pelita besar. Pelita itu di dalam kaca (dan) kaca itu seakan-akan bintang (yang bercahaya) seperti mutiara, yang dinyalakan dengan minyak dari pohon yang berkahnya, (yaitu) pohon zaitun yang tumbuh tidak di sebelah timur (sesuatu) dan tidak pula di sebelah barat(nya), yang minyaknya (saja) hampir-hampir menerangi, walaupun tidak disentuh api. Cahaya di atas cahaya (berlapis-lapis), Allah membimbing kepada cahaya-Nya siapa yang dia kehendaki, dan Allah memperbuat perumpamaan-perumpamaan bagi manusia, dan Allah Maha Mengetahui segala sesuatu.

Ternyata disebutkan bahwa cahaya berlapis-lapis/bertingkat. Dalam fisika telah dimaklumi bahwa cahaya putih dari sinar matahari jika dilwatkan pada sebuah prisma akan terurai menjadi warna-warni seperti pelangi. Warna-warni ini menunjukkan spektrum cahaya sekaligus tingkat energinya. Semakin ke arah warna merah, energinya semakin tinggi. Jika cahaya memasuki air laut, maka uraian warna tadi (pelangi) tersebut akan hilang satu persatu sesuai tingkatannya. Pada kedalaman tertentu, warna merah tidak bisa menembus lagi, sementara warna lainnya masih terus masuk ke dalam air. Begitu seterusnya sampai warna terakhir yang masuk ke kedalaman tertentu secara berurutan ke warna violet.




Fenomena ini cukup jelas bagi kita bahwa cahaya memiliki tingkatan seperti disebutkan dalam al Qur’an. Makna tersembunyi lainnya adalah bahwa pernyataan al Qur’an (an Nuur : 40) tentang adanya lapisan di dalam lautan tidak pula dipungkiri.
40. Atau seperti gelap gulita di lautan yang dalam, yang diliputi oleh ombak, yang di atasnya ombak (pula), di atasnya (lagi) awan; gelap gulita yang tindih-bertindih, apabila dia mengeluarkan tangannya, tiadalah dia dapat melihatnya, (dan) barangsiapa yang tiada diberi cahaya (petunjuk) oleh Allah tiadalah dia mempunyai cahaya sedikitpun.
Karakter lainnya dari cahaya adalah memiliki massa diam m0 = 0. Ini berarti bahwa cahaya tidak memiliki energi jika dalam keadaan diam. Energi cahaya dapat dinyatakan dengan perkalian frekuensinya dengan konstanta Planck (h), jadi E = hf dengan f = frekuensi cahaya. Dengan kata lain, cahaya tidak pernah diam kapanpun. Sifat cahaya ini tidak lain adalah sifat Allah Swt, yaitu Nur ‘alan Nuur.
Dalam ayat lain (ar Rahmaan: 29), Allah senantiasa dalam keadaan menciptakan, menghidupkan, mematikan, memelihara, memberi rezki dan lain lain.
29. … Setiap waktu Dia dalam kesibukan.
Allah tidak pernah tidur, Dia selalu sibuk, bergerak, berinovasi, menciptakan baik benda langit dan makhluk hidup di bumi selalu mengalami perubahan karena kehendak Allah. Sifat cahaya yang tidak pernah diam ini merupakan sifat Allah. Jika cahaya diam, berarti tidak memiliki energi, tidak memiliki kreativitas (daya cipta), tidak memiliki inovasi. Ini bertentangan dengan sifat Allah yang Maha Pencipta.
Hasil penelitian Astro-Fisika terbaru menunjukan bahwa di langit selalu tercipta bintang-bintang baru dalam bentuk Asap, asap-asap ini membentuk jaringan materi antar galaksi, menggumpal, membentuk bintang-bintang baru, seterusnya sampai wujud bintang yang kita lihat setiap malam. Surat Fushshilat : 11 menjelaskan:
11. Kemudian Dia menuju kepada penciptaan langit dan langit itu masih merupakan asap, lalu Dia berkata kepadanya dan kepada bumi: “Datanglah kamu keduanya menurut perintah-Ku dengan suka hati atau terpaksa.” Keduanya menjawab: “Kami datang dengan suka hati.”
Ayat di atas menunjukkan bahwa kepatuhan langit ini diimplementasikan dalam bentuk taat azas berupa tetapnya Hukum-Hukum Alam di Jagad Raya ini. Sedikit saja terjadi pergeseran/melenceng dari Hukum Alam yang ada, dapat dibayangkan benda-benda langit akan keluar dari garis edarnya. Begitu pula, sedikit saja frekuensi cahaya tampak digeser ke arah tinggi atau rendah, maka hal-hal yang indah dalam penglihatan kita, bisa terhapus selamanya.
Manusia hanya bisa melihat pada frekuensi cahaya tampak, di luar rentang frekuensi ini, cahaya tidak dapat dilihat. Frekuensi diluar rentang cahaya tampak adalah sinar X, sinar gamaa, infra merah, gelombang radio, dan lainnya. Kesemuanya, termasuk cahaya merupakan gelombang elektromagnetik (GEM). Meskipun tidak terlihat, cahaya/sinar-sinar (GEM) ini semua bermanfaat bagi manusia, seperti penggunaan Rontgen dalam kedokteran, komunikasi radio dan lainnya.
sumber: http://www.fisikanet.lipi.go.id/

Waktu Mungkin Akan Berhenti 5 Milyar Tahun Depan



Sejauh yang bisa dikatakan para astrofisikawan, alam semesta mengembang dengan kecepatan tinggi dan cenderung akan tetap demikian untuk jangka waktu yang tak terbatas. Akan tetapi sekarang beberapa fisikawan mengatakan bahwa teori ini yang disebut "pengembangan abadi" dan implikasinya bahwa waktu tak ada akhirnya, merupakan suatu masalah bagi para ilmuwan untuk mengkalkulasi probabilitas setiap kejadian. Dalam makalah baru, mereka mengkalkulasi bahwa waktu cenderung akan berhenti dalam 5 milyar tahun mendatang yang disebabkan oleh sejenis malapetaka yang tak ada satupun hidup pada waktu itu untuk menyaksian kejadian tersebut.

Para fisikawan yakni Raphael Bousso dari Universitas California, Berkeley, bersama rekan-rekannya mempublikasikan makalah yang berisi rincian teori mereka di arXiv.org. Dalam makalah tersebut, mereka menjelaskan bahwa pada suatu alam semesta abadi, kejadian-kejadian yang paling mustahil pun akhirnya akan terjadi, dan tak hanya terjadi tapi terjadi dalam jumlah yang tak terbatas. Oleh karena probabilitas atau peluang diartikan dalam lingkup kelimpahan relatif kejadian-kejadian, maka tak ada gunanya menentukan tiap probabilitas karena setiap kejadian akan cenderung terjadi dengan sama.

"Jika memang terjadi di alam, pengembangan abadi memiliki implikasi-implikasi yang luar biasa besar," seperti yang ditulis Bousso dan rekan-rekannya dalam makalah mereka. "Tipe kejadian atau peristiwa apa pun yang memiliki probabilitas yang tidak bernilai nol, akan terjadi banyak kali secara tak terbatas, biasanya pada wilayah-wilayah terpisah yang tetap selamanya di luar hubungan sebab. Hal ini meruntuhkan dasar prediksi-prediksi probabilistik eksperimen-eksperimen yang dilakukan dalam dunia sehari-hari. Apabila secara tak terbatas banyak orang di seluruh alam semesta memenangkan undian, pada bidang apa seseorang masih bisa mengklaim bahwa memenangkan undian itu mustahil? Pastinya ada juga banyak orang yang tidak menang undian, tapi dalam pengertian apa jumlah mereka lebih banyak? Dalam eksperimen-eksperimen sehari-hari seperti mengikuti undian, kita memiliki aturan-aturan jelas untuk membuat prediksi-prediksi dan menguji teori-teori. Akan tetapi jika alam semesta mengembang selamanya, kita tak lagi mengetahui mengapa aturan-aturan ini berfungsi.

"Untuk melihat bahwa hal ini bukanlah semata-mata merupakan maksud filosofis, hal tersebut membantu mempertimbangkan eksperimen-eksperimen kosmologis di mana aturan-aturan tersebut agak kurang jelas. Sebagai contoh, seseorang ingin memprediksi atau menjelaskan keistimewaan Latar Gelombang Mikro Kosmik, atau teori lebih dari satu vakum, seseorang mungkin ingin memprediksi sifat-sifat terduga dari vakum tersebut yang kita ketahui sendiri, seperti massa Higgs. Hal ini memerlukan komputasi jumlah relatif observasi-observasi nilai-nilai berbeda massa Higgs tersebut, atau langit Latar Gelombang Mikro Kosmik. Akan ada banyak contoh-contoh tak terbatas setiap pengamatan yang mungkin dilakukan, jadi apa itu probabilitas? Hal ini dikenal sebagai "masalah pengukuran" pengembangan abadi."

Para fisikawan menjelaskan bahwa satu solusi terhadap masalah ini ialah untuk menyimpulkan bahwa waktu pada akhirnya akan berhenti. Maka akan ada jumlah terbatas peristiwa yang terjadi di mana kejadian-kejadian mustahil terjadi lebih sedikit daripada kejadian-kejadian yang mungkin.

Pemilihan waktu "penghentian" ini akan mengartikan rangkaian kejadian-kejadian yang diperkenankan. Oleh karena itu para fisikawan mencoba mengkalkulasi kemungkinan kapan waktu akan berhenti yang menghasilkan lima pengukuran penghentian berbeda. Pada dua dari lima skenario ini, waktu memiliki 50eluang berhenti dalam waktu 3,7 milyar tahun. Pada dua skenario lainnya, waktu memiliki 50eluang untuk berhenti dalam 3,3 milyar tahun.

Pada skenario kelima yang merupakan skenario terakhir, skala waktu sangat singkat (dalam urutan waktu Planck). Pada skenario ini, para ilmuwan mengkalkulasi bahwa "waktu akan sangat besar cenderung berhenti pada detik berikutnya." Untungnya, kalkulasi ini memprediksikan bahwa kebanyakan orang adalah "bayi-bayi Boltzmann" yang timbul dari gejolak-gejolak kuantum pada permulaan alam semesta. Oleh karena kebanyakan dari kita bukan "bayi-bayi" tersebut, para fisikawan bisa mengeluarkan skenario ini (sudah pasti).

Bagaimana akhir waktu tersebut seperti yang dirasakan oleh orang-orang pada waktu itu? Sebagaimana yang dijelaskan oleh para fisikawan, orang-orang tersebut tak akan pernah mengetahuinya. "Orang-orang pada masa itu akan tak terelakkan berada dalam penghentian sebelum menyaksikan kematian semua sistem lainnya," seperti yang ditulis oleh para ilmuwan. Mereka membandingkan batas penghentian waktu tersebut dengan ufuk lubang hitam.

"Batas tersebut dapat diperlakukan sebagai suatu obyek dengan sifat-sifat fisik termasuk temperatur," menurut para fisikawan dalam makalah mereka. "Sistem-sistem materi yang bertemu dengan akhir waktu di termalisasi di ufuk ini. Hal ini mirip dengan gambaran orang yang berada di luar tentang suatu sistem materi yang jatuh ke dalam sebuah lubang hitam. Namun, hal yang sangat baru ialah pernyataan bahwa kita mungkin mengalami termalisasi pada waktu melewati ufuk lubang hitam." Sekalipun begitu termalisasi "sistem materi" tetap saja tak akan menemukan sesuatu yang tak biasa ketika melewati ufuk ini.

Bagi mereka yang merasa tak nyaman terhadap berhentinya waktu, para fisikawan memperhatikan bahwa ada solusi-solusi lain untuk mengukur masalah tersebut. Mereka tidak mengklaim bahwa kesimpulan mereka bahwa waktu akan berhenti itu benar, hanya hal tersebut secara logika mengikuti dari suatu rangkaian asumsi. Jadi mungkin salah satu dari ketiga asumsi yang menggarisbawahi kesimpulan itu malahan tidak benar.

Asumsi yang pertama ialah bahwa alam semesta itu sedang mengembang selamanya, yang merupakan konsekuensi relativitas umum dan sangat didukung oleh bukti eksperimental yang diamati selama ini. Asumsi kedua ialah bahwa definisi probabilitas didasarkan pada frekwensi relatif suatu kejadian, atau apa yang disebut oleh para ilmuwan sebagai asumsi tipikalitas. Asumsi ketiga ialah bahwa jika waktu ruang memang tak terbatas, maka satu-satunya cara untuk menentukan probablitas suatu kejadian ialah membatasi atensi seseorang kepada suatu bagian terbatas dari alam-alam semesta yang tak terbatas. Beberapa fisikawan lainnya memperhatikan alternatif-alternatif asumsi ketiga ini.

Apapun yang terjadi dalam 3,7 milyar tahun mendatang, makalah Bousso dan rekan-rekannya mungkin akan menimbulkan bermacam-macam reaksi dalam waktu dekat ini.

Setidaknya kita bisa melihat garis besar dari informasi ini.

sumber: http://www.fisikanet.lipi.go.id/

Minggu, 26 Juni 2011

+ LELUCON FISIKA +



Lelucon fisika...

Saya jadi teringat lelucon yang saya terima beberapa tahun yang lalu….

Lelucon ini menghubungkan antara pepatah Inggris dengan rumus Fisika….

Isinya kayak gini :

Pepatah Inggris:

- Time is Money, jadi Time = Money …………..(1)

- Knowledge is Power, jadi Knowledge = Power ………….(2)

Rumus Fisika :

Power = Work/Time atau dengan simbol ditulis :

P = W / t ……………………..(3)

dimana :

P = Power (Watt)W = Work (Joule)t = time (second)

Lihat kembali persamaan (3) di atas :

Power = Work / time

substitusikan Knowledge = Power dan Time = Money ke persamaan di atas menjadi :

Knowledge = Work / Money

<=> Money = Work / Knowledge ……………………..(4)

He..he… lihat persamaan (4) diatas :

Jika Knowledge sangat kecil (mendekati nol), dan Work (Kerja) kita bikin konstan aja, maka Money akan manjadi sangat

besar (tak terhingga)

Persamaan ini menjelaskan kenapa banyak terjadi orang yang gak punya ilmu pengetahuan kok bisa kaya raya,

sedangkan orang yang ilmu nya tinggi nggak bisa kaya, padahal kerja kedua orang tersebut sama :-)

Sumber:Written by Bang Jhon

KUMPULAN RUMUS FISIKA

* Materi Kelas 1 SMA (kelas X)


Besaran dan Satuan
Gerak lurus
Hukum Newton
Memadu Gerak
Gerak Melingkar
Gravitasi
Usaha dan Energi
Momentum
Elastisitas
Fluida


* Materi Kelas 2 SMA (kelas XI)

Gelombang Bunyi
Suhu dan Kalor
Listrik Statis
Listrik Dinamis
Medan Magnet
Imbas Elektromagnetik
Optika Geometri
Alat Optik
Arus Bolak-Balik


* Materi Kelas 3 SMA (kelas XII)

Perkembangan Teori Atom
Radioaktivitas
Kesetimbangan Benda Tegar
Titik Berat Benda
Teori Kinetik Gas
Hukum Termodinamika
Gelombang Elektromagnetik
Optika Fisis
Relativitas
Dualisme Gelombang Partikel


Sumber :temen-temen yang ingin mendapatkan rumus-rumus lengkap tersebut,bisa di download di : http://www.banksoal.sebarin.com/…/..lengkap.htm

^* fisika Modern *^

TEORI RELATIVITAS

Relativitas merupakan objek penting yang berkaitan dengan pengukuran (pengamatan) tentang dimana dan kapan suatu kejadian terjadi dan bagaimana kejadian tersebut dianalisa (diukur) menurut suatu kerangka acuan yang bergerak relatif terhadap kerangka yang lain.
• Relativitas khusus
Dalam teori relativitas khusus subjek yang menjadi fokus adalah kerangka acuan yang inersial (kerangka acuan yang berlaku hukum gerak Newton). Dua postulat Einstein:
1. Postulat Relativitas
Hukum-hukum fisika yang berlaku sama untuk setiap kerangka acuan yang inersial. Galileo mengasumsikan bahwa yang berlaku sama adalah hukum-hukum mekanika. Postulat Einstein memperluas cakupan termasuk hukum-hukum elektromagnetik dan optik. Yang sama bukan hasil pengukuran, melainkan hukum-hukum fisikanya.

2. Postulat Kelajuan Cahaya
Laju cahaya dalam vakum adalah c dalam segala arah dan dalam semua kerangka acuan yang inersial. Ini berarti terdapat nilai batas alami laju benda.

Eksperimen oleh Bertozzi tahun 1964 tentang elektron yang dipercepat menunjukkan bahwa jika lajunya mendekati c maka energi kinetiknya menuju . Batas laju pada kurva tersebut adalah laju rambat cahaya c = 299792458 m/s.
Teori Relativitas Einstein adalah teori yang sangat terkenal, tetapi sangat sedikit yang kita pahami. Utamanya, teori relativitas ini merujuk pada dua elemen berbeda yang bersatu ke dalam sebuah teori yang sama: relativitas umum dan relativitas khusus. Teori relativitas khusus telah diperkenalkan dulu, dan kemudian berdasar atas kasus-kasus yang lebih luas diperkenalkan teori relativitas umum.
Konsep teori relativitas
• Teori relativitas khusus Einstein - tingkah laku benda yang terlokalisasi dalam kerangka acuan inersia, umumnya hanya berlaku pada kecepatan yang mendekati kecepatan cahaya.
• Transformasi Lorentz - persamaan transformasi yang digunakan untuk menghitung perubahan koordinat benda pada kasus relativitas khusus.
• Teori relativitas umum Einstein - Teori yang lebih luas, dengan memasukkan graviti sebagai fenomena geometris dalam sistem koordinat ruang dan waktu yang melengkung, juga dimasukkan kerangka acuan non inersia (misalnya, percepatan).

A. KEGAGALAN RELATIVITAS KLASIK
Relativitas klasik (yang diperkenalkan pertama kali oleh Galileo Galilei dan didefinisikan ulang oleh Sir Isaac Newton) mencakup transformasi sederhana diantara benda yang bergerak dan seorang pengamat pada kerangka acuan lain yang diam (inersia). Jika kamu berjalan di dalam sebuah kereta yang bergerak, dan seseorang yang diam diatas tanah (di luar kereta) memperhatikanmu, kecepatanmu relatif terhadap pengamat adalah total dari kecepatanmu bergerak relatif terhadap kereta dengan kecepatan kereta relatif terhadap pengamat. Jika kamu berada dalam kerangka acuan diam, dan kereta (dan seseorang yang duduk dalam kereta) berada dalam kerangka acuan lain, maka pengamat adalah orang yang duduk dalam kereta tersebut.
Permasalahan dengan relatifitas ini terjadi ketika diaplikasikan pada cahaya, pada akhir 1800-an, untuk merambatkan gelombang melalui alam semesta terdapat substansi yang dikenal dengan eter, yang mempunyai kerangka acuan(sama seperti pada kereta pada contoh di atas). Eksperimen Michelson-Morley, bagaimanapun juga telah gagal untuk mendeteksi gerak bumi relatif terhadap eter, dan tak ada seorangpun yang bisa menjelaskan fenomena ini. Ada sesuatu yang salah dalam interpretasi klasik dari relatifitas jika diaplikasikan pada cahaya dan kemudian munculah pemahaman baru yang lebih matang setelah Einstein datang untuk menjelaskan fenomena ini.

B. POSTULAT EINSTEIN
Prinsip relativtas (postulat pertama): Hukum-hukum fisika adalah sama untuk setiap kerangka acuan
Prinsip kekonstanan kecepatan cahaya (postulat kedua): Cahaya dapat merambat dalam vakum (misalnya, ruang vakum, atau “ruang bebas”), kecepatan cahaya dinotasikan dengan c, yang konstan terhadap gerak benda yang meiliki radiasi.
Sebenarnya, makalah tersebut menyajikan lebih formal, formulasi matematika dari postulat tersebut. Bentuk dari postulat mungkin sedikit berbeda dari buku teks yang satu dengan yang lain karena translasi dari bentuk matematika Jerman dengan bentuk Inggris yang selama ini sering kita lihat.
Postulat kedua sering ditulis sembarangan dengan memasukkan bahwa kecepatan cahaya dalam ruang hampa adalah c untuk setiap kerangka acuan. Sebenarnya postulat ini adalah berasal dari dua postulat, bukan dari postulat kedua itu sendiri.
Postulat pertama kelihatan lebih masuk akal, tetapi bagaimanapun juga postulat kedua merupakan revolusi besar dalam ilmu fisika. Einstein sudah memperkenalkan teori foton cahaya dalam makalahnya pada efek fotolistrik (yang menghasilkan kesimpulan ketidakperluan eter). Postulat kedua, adalah sebuah konsekuensi dari foton yang tak bermassa bergerak dengan kecepatan c pada ruang hampa. Eter tidak lagi memiliki peran khusus sebagai kerangka acuan inersia “mutlak” alam semesta, jadi bukan hanya tidak perlu, tetapi juga secara kualitatif tidak berguna di dalam relativitas khusus.
Adapun makalah tersebut adalah untuk menggabungkan persamaan Maxwell untuk listrik dan magnet dengan gerak elektron dengan kecepatan mendekati kecepatan cahaya. Hasil dari makalah Einstein adalah memperkenalkan transformasi koordinat baru, dinamakan transformasi Lorentz, antara kerangka acuan inersia. Pada kecepatan lambat, transformasi ini pada dasarnya identik dengan moel klasik, untuk kecepetan yang mendekati kecepatan cahaya, menghasilkan nilai yang berbeda secara radikal.

C. AKIBAT POSTULAT EINSTEIN


Ada dua postulat dalam teori relativitas khusus ini. Yang pertama menyatakan bahwa semua hukum fisika yang berlaku di bumi, berlaku juga di seluruh jagad raya. Yang kedua menyatakan bahwa kecepatan cahaya di ruang hampa selalu konstan (sekitar tiga ratus juta meter per detik (3.108 meter per detik). Postulat yang kedua ini menunjukkan bahwa bagaimanapun cara kita mengukurnya, kecepatan cahaya tidak pernah berubah. Di mana pun posisi kita saat mengukur, dan berapa pun kecepatan kita (apakah kita sedang bergerak atau sedang duduk diam) saat mengukur, kecepatan cahaya selalu konstan. Ini menunjukkan bahwa kecepatan cahaya merupakan satu-satunya yang bersifat absolut (mutlak). Postulat yang pertama pun menyatakan bahwa kondisi ini selalu berlaku di mana pun. Ini berarti, jika kita mengukur kecepatan cahaya di galaksi lain, kita tetap mendapatkan hasil yang sama, yaitu tiga ratus juta meter per detik.

Postulat-postulat Einstein ini ternyata memberi dampak besar bagi dunia. Ia pernah mencoba menjelaskan efek yang dihasilkan dari teorinya ini dalam perumpamaan berikut. Misalnya ada sebuah kereta yang sedang meluncur cepat. Si A sedang duduk dengan tenang dalam salah satu gerbong kereta itu. Si B sedang berdiri diam di luar kereta dan mengamati kereta yang meluncur di depannya itu. Sewaktu gerbong kereta yang dinaiki si A meluncur tepat di depannya, tiba-tiba ada kilat menyambar di dua tempat yang berbeda. Kilat pertama menyambar 100 meter di sebelah kanan B, sedangkan kilat yang satunya lagi menyambar 100 meter di sebelah kiri B. Saat kedua kilat menyambar, posisi A tepat di depan B. Karena si B sedang berdiri diam di luar kereta yang sedang meluncur, si B melihat kedua kilat itu menyambar pada saat yang bersamaan. Tetapi lain halnya dengan si A. Si A yang sedang berada di dalam kereta yang meluncur cepat (ke arah kanan si B) melihat kedua kilat menyambar satu per satu. Kilat yang pertama terlihat lebih dulu, beberapa saat kemudian baru kilat yang kedua terlihat oleh A. Padahal jarak A terhadap kilat pertama dan kedua sama dengan jarak B terhadap kedua kilat itu. Perbedaan ini disebabkan bedanya kerangka acuan A dan B (frame of reference). Si A sedang ‘meluncur’, sedangkan si B sedang berdiri ‘diam’. Karena si A sedang bergerak menuju kilat yang pertama, tentu saja kilat yang pertama itu terlihat lebih dulu. A bergerak menjauhi kilat yang kedua, sehingga kilat yang kedua tampak menyambar sesudah kilat yang pertama. Bagi si B yang sedang diam dan tidak mendekati maupun menjauhi kedua kilat itu, keduanya tampak menyambar pada waktu yang bersamaan.
1. Pemuluran Waktu (time dilation) adalah waktu yang diamati oleh pengamat yang bergerak terhadap kejadian, seolah-olah mulur. Artinya, waktu yang diamati oleh pengamat yang bergerak relatif terhadap kejadian akan lebih lama dibandingkan oleh pengamat yang diam.

Dimana :
= selang waktu kejadian menurut pengamat yang bergerak
= selang waktu kejadian menurut pengamat yang diam
= kecepatan pengamat yang bergerak
= kecepatan cahaya
Seorang pengamat O’ yang bergerak dengan laju u terhadap pengamat O akan mengukur waktu yang lebih lama daripada pengamat O yang diam. Semua jam akan berjalan lambat menurut seorang pengamat yang bergerak relatif, termasuk jam biologis, pertumbuhan usia karena efek pemuluran waktu.

2. Penyusutan Panjang (length contraction) adalah Panjang benda yang diam akan tampak lebih panjang bila diukur oleh pengamat yang diam terhadap benda. Sedangkan panjang benda yang diamati oleh pengamat yang bergerak relatif terhadap benda akan tampak lebih pendek. Peristiwa inilah yang disebut kontraksi panjang atau kontraksi Lorentz. Kontraksi Lorentz adalah perubahan panjang suatu benda akibat gerakan relatif pengamat/benda, yang dinyatakan:

Dimana:
= panjang benda yang diamati oleh pengamat yang bergerak
= panjang benda yang diamati oleh pengamat yang diam
= kecepatan pengamat yang bergerak
= kecepatan cahaya
Penyusutan panjang terjadi hanya sepanjang arah gerak, semua komponen panjang lainnya (tegak lurus arah gerak) tidak terpengaruh.

3. Massa relativistik

Dimana:
= massa benda yang bergerak dengan laju u
= massa benda dalam keadaan diam
= kecepatan benda
= kecepatan cahaya

Efek dari Relativitas Khusus
Relativitas khusus menghasilkan beberapa konsekuensi dari penggunaan transformasi Lorentz pada kecepatan tinggi (mendekati kecepatan cahaya). Diantaranya adalah :
• Dilatasi waktu (termasuk “paradok kembar” yang terkenal)
• Konstraksi panjang
• Transformasi kecepatan
• Efek doppler relativistk
• Simultanitas dan sinkronisasi waktu
• Momentum relativistik
• Energi kinetik relativistik
• Massa relativistik
• Energi total relativistik
Selain itu, manipulasi aljabar sederhana dari konsep-konsep di atas menghasilkan dua hasil signifikan yang pantas dijelaskan sendiri.
Hubungan Massa-Energi
Enstein mampu menunjukkan bahwa terdapat hubungan antara massa dan energi, melalui rumus yang sangat terkenal E=mc2. Hubungan ini telah dibuktikan dengan peristiwa yang sangat dramatis di dunia, ketika bom nuklir melepaskan energi dari massa di Hiroshima dan Nagasaki pada akhir perang dunia kedua.
Kecepatan Cahaya
Tak ada objek bermassa yang dapat bergerak dipercepat menuju kecepatan cahaya. Hanya objek tak bermassa, seperti foton, yang dapat bergerak dengan kecepatan cahaya. (foton tidak bergerak dipercepat menuju kecepatan cahaya, tetapi foton selalu bergerak dengan kecapatan cahaya). Tetapi bagi objek fisis, kecepatan cahaya adalah terbatas. Energi kinetik pada kecepatan cahaya menjadi tak terbatas, jadi tidak pernah dapat dicapai dengan percepatan. Beberapa telah menunjukkan bahwa sebuah objek secara teori dapat bergerak melebihi kecepatan cahaya, tetapi sejauh ini tidak ada entitas fisik yang dapat menujukkan itu.
Adopsi Relativitas Khusus
Pada 1908, Max Plank mengaplikasikan bentuk “teori relativitas” untuk menjelaskan konsep relativitas khusus, karena aturan kunci dari relativitas memainkan peran dalam konsep tersebut. Pada waktu itu, tentunya bentuk yang diaplikasikan hanya pada relativitas khusus, karena memang belum terdapat relativitas umum. Relativitas Einstein tidak segera diterima oleh fisikawan secara keseluruhan, karena kelihatan sangat teoretis dan conterintuitif. Kemudian Einstein menerima penghargaan Nobel pada 1921, khususnya penyelesaiannya untuk efek fotolistrik dan kontribusinya pada fisika teori. Tetapi Relativitas masih menjadi kontroversi untuk menjadi referensi spesifik.
Seiring berjalannya waktu, bagaimanapun juga, presiksinya terhadap relativitas khusus akhirya menjadi kenyataan. Misalkan, jam terbang di selruh dunia telah menunjukkan adanya perlambatan dengan durasi yang diprediksi oleh teori relativitas. Albert Einstein tidak menciptakan sendiri transformasi koordinat yang dibutuhkan untuk relativitas khusus. Dia tidak harus melakukannya, karena transformasi yang dibutukan telah ada sebelumnya. Einstein menjadi seorang yang ahli dalam pekerjaannya yang terdahulu dan menyesuaikan diri pada situasi yang baru, dan juga dengan transformasi Lorentz seperti yang telah Planck gunakan pada 1900 untuk menyelesaikan permasalahan bencana ultraviolet pada radiasi benda hitam, Einstein merancang solusi untuk efek fotolistrik, dan dengan demikian dia telah mengembangkan teori foton untuk cahaya.
D. TRANSFORMASI LORENTZ
Transformasi Lorentz sebenarnya pertama kali telah diperkenalkan oleh Joseph Larmor pada 1897. Versi yang sedikit berbeda telah diperkenalkan pada beberapa dekade sebelumnya oleh Woldemar Voigt, tetapi versinya memiliki bentuk kuadrat pada persamaan dilatasi waktu. Tetapi, persamaan dilatasi waktu kedua versi tersebut dapat ditunjukkan sebagai invarian dalam persamaan Maxwell. Seorang Matematikawan dan fisikawan Hendrik Antoon Lorentz mengusulkan gagasan “waktu lokal” untuk menjelaskan relatif simultanitas pada 1895, walaupun dia juga bekerja secara terpisah pada transformasi yang sama untuk menjelaskan hasil “nol” pada percobaan Michelson dan Morley. Dia mengenalkan transformasi koordinatnya pada 1899, dan menambahkan dilatasi waktu pada 1904.
Pada 1905, Henri Poincare memodifikasi formulasi aljabar dan menyumbangkannya kepada Lorentz dengan nama “Transformasi Lorentz,” formulasi Poincare pada transformasi tersebut pada dasarnya identik dengan apa yang digunakan Einstein. Transformasi Lorentz tersebut menggunakan sistem koordinat empat dimensi, yaitu tiga koordinat ruang (x, y, dan z) dan satu koordinat waktu (t). Koordinat baru ditandai dengan tanda apostrof diucapkan “abstain,” seperti x’ dibaca “x-abstain.” Pada contoh dibawah ini, kecepatan adalah dalam arah x’, dengan besar u:

Transformasi tersebut hanya untuk demonstrasi. Aplikasi dari persamaan tersebut akan ditangani secara terpisah. Bentuk √((1-u2/c2) sering muncul dalam relativitas sehingga dilambangkan dengan simbol yunani γ (dibaca gamma) dalam beberapa penyajian. Perlu diingat bahwa pada kasus u << c (u jauh lebih kecil dibandingkan c), maka u2/c2 akan menjadi sangat kecil sehingga di dalam bentuk akar akan menghasilkan nilai satu, maka nilai γ akan menjadi satu. Oleh karena itu, dilatasi ruang dan waktu menjadi sangat tidak berpengaruh untuk benda yang bergerak jauh dibawah kecepatan cahaya. Konsekuensi dari Transformasi Lorentz Relativitas khusus menghasilkan beberapa konsekuensi dari penggunaan Transformasi Lorentz pada kecepatan tinggi (mendekati kecepatan cahaya). Diantaranya adalah : • Dilatasi waktu (termasuk “paradok kembar” yang terkenal) • Konstraksi panjang • Transformasi kecepatan • Efek doppler relativistk • Simultanitas dan sinkronisasi waktu • Momentum relativistik • Energi kinetik relativistik • Massa relativistik • Energi total relativistik Kontroversi Lorenz dan Einstein Beberapa orang mengatakan bahwa sebenarnya sebagian besar pekerjaan dari relativitas khusus yang telah dikerjakan einstein telah ada dalam transformasi Lorentz. Konsep dilatasi dan simultanitas untuk pergerakan benda telah disebutkan dan secara matematis telah dikembangkan oleh Lorentz dan Poincare. Beberapa orang mengganggap bahwa Einstein adalah seorang plagiator. Tentunya terdapat validitas untuk tuduhan tersebut. Tentu saja, revolusi besar Einstein dibangun berdasarkan pekerjaan-pekerjaan orang lain, dan Einstein mendapatkan banyak hasil atas apa yang telah mereka hasilkan secara kasar. Pada waktu yang sama, tetapi harus dipertimbankan bahwa Einstein mengambi konsep-konsep dasar ini dan memebangunnya menjadi sebuah kerangka teori yang menjadikan konsep-konsep tersebut untuk bukan hanya sekedar trik matematis untuk menyelamatkan dying teori (teori sekarat) seperti teori eter, melainkan menggunakan aspek-aspek fundamental alam pada tempatnya. Terdapat ketidakjelasan bahwa Larmor, Lorentz, atau Poincare yang dimaksudkan agar berani bergerak, namun sejaraha telah memberikan penghargaan kepada Einstein atas wawasan dan keberainannya. Pada 1905, Teori Einstein (relativitas khusus), dia menunujukkan bahwa diantara kerangka acuan inersia tidak terdapat kerangka acuan “utama.” Perkembangan dari relativitas umum terjadi, sebagian sebagai upaya untuk menunjukkan bahwa ini benar di antara non-inersia (yaitu mempercepat) kerangka acuan juga. DUALISME GELOMBANG PARTIKEL Gejala Foto Listrik. Yang dimaksud dengan gejala foto listrik adalah emisi (pancaran) elektron dari logam sebagai akibat penyinaran gelombang elektromagnetik (cahaya) pada logam tersebut. 1. EFEK FOTO LISTRIK Jika seberkas cahaya dengan frekuensi f jatuh pada permukaan sebuah pelat logam , ternyata amperemeter mendeteksi adanya aruslistrik. Oleh Albert Einstein hal ini dijelaskan sebagai berikut :



2. Teori Kuantum Cahaya



Cahaya yang jatuh pada permukaan pelat logam dipandang terdiri dari paket-paket energi (foton) yang besarnya E = hf
Energi foton yang jatuh akan diserap seluruhnya oleh elektron pada logam yang berinteraksi dengannya.
Energi yang diserap, digunakan oleh elektron (disebut fotoelektron) untuk :
 melepaskan diri dari ikatan ion logam, sebesar W. Dimana W adalah fungsi kerja logam.
 Jika ada sisa energi, (yaitu hf-W), akan digunakan untuk bergerak (sebagai energi kinetik = Ek).
Hubungan antara hf, W dan Ek dapat dirumuskan dalam persamaan efek FOTOLISTRIK.

dimana :
hf = energi foton yang datang
W =energi ambang (batas energi) untuk melepas satu elektron dari logam
EK = energi kinetik fotoelektron
Jika energi yang datang harganya persis sama dengan W, maka dinamakan energi ambang. Frekuensi yang berhubungan dengan energi ambang tersebut, dinamakan frekuensi ambang (f0). Dimana :


Dengan demikian persamaan fotolistrik dapat diubah menjadi

atau


Jika f < f0, tidak ada fotoelektron yang keluar dari permukaan logam (=arus tidak akan ada), walaupun intensitas cahaya yang datang diperbesar. Jika f = f0, fotoelektron lepas dari ikatan logam tetapi tidak keluar dari permukaan logam Jika f > f0, fotoelektron lepas dari ikatan logam dan bergerak keluar dari permukaan logam dengan energi kinetik EK
Potensial Penghenti (Stopping Potensial)
Arus listrik (aliran elektron) yang timbul dari percobaan di atas (akibat keluarnya fotoelektron dari permukaan logam) dapat dihentikan oleh tegangan negatif yang nilainya diatur sehingga energi potensial listrik yang dihasilkan sama dengan energi kinetik fotoelektron.




Tegangan yang diberikan dinamakan potensial penghenti (stopping potensial), yang besarnya dapat dituliskan sebagai :


dengan :
e = muatan elektron
V0 = potensial penghenti (stopping potensial)
3. EFEK COMPTON

Distribusi intensitas pancaran benda hitam hanya dapat diterangkan jika kita menganggap energi gelombang elektromagnetik berada dalam bentuk diskrit, atau dalam bentuk paket-paket energi, yang disebut foton. Untuk gelombang dengan frekuensi f, besar satuan paket energinya atau energi 1 foton adalah :


dimana :

E = Energi tiap foton dalam Joule.
f = Frekwensi cahaya.
h = Tetapan Planck yang besarnya h = 6,625 .10 –34 J.det

Jika seberkas gelombang elektromagnetik terdiri dari N buah foton, maka energi berkas gelombang tersebut adalah :



Ide bahwa gelombang elektromagnetik dapat dipandang terdiri dari kumpulan paket-paket energi atau foton inilah (yang merupakan ide dari Max Planck) yang sebenarnya merupakan titik awal dari Fisika Modern.
Sebuah foton memiliki energi E = hf. Sedang menurut Einstein energi akan setara dengan massa dengan rumus E = mc2. Maka dapat dirumuskan :
mc2 = hf → mc = h
Momentum dari sebuah foton adalah p = mc, maka :

p = h atau


berdasarkan hal ini, A.H. Compton melakukan percobaan dengan menumbukkan foton pada sebuah elektron.






Dari percobaan ini diperoleh data bahwa foton yang menumbuk elektron akan dihamburkan dengan panjang gelombang yang lebih besar daripada panjang gelombang semula. Dengan menggunakan hukum kekekalan energi dan kekekalan momentum pada tumbukan di atas, akan diperoleh hubungan :

dimana :
λ’ = panjang gelombang foton setelah tumbukan
λ = panjang gelombang foton sebelum tumbukan
m0 = massa diam elektron = 9.1 X 10-31
h = konstanta Planck = 6.63 X 10 -34 J.s
c = kecepatan cahaya = 3 X 108

Efek Compton juga memperlihatkan bahwa cahaya memiliki sifat seperti partikeL


4. PEMBENTUKAN SINAR – X
Sinar-X dapat terbentuk dari dua macam caaara, yaitu :
• Brem β trahlung
Proses terbentuknya sinar-X adalah kebalikan dari efek fotolistrik. Jika elektron yang bergerak sangat cepat menumbuk sasaran logam maka ia akan mengalami perlambatan yang besar. Elekton akan kehilangan energi kinetik. Energi kinetik yang hilang berubah menjadi energi foton sinar-X.
Efek ini disebit Brem β trahlung, berasal dari bahasa Jerman yang artinya radiasi pengereman. Sinar-X jenis ini spektrumnya kontinu.
→ hf = EK1 – EK2
Jika elektron berhenti sama sekali, maka EK2 = 0,
→ h fmaks = EK1
→ h = mv2
→ h = eV
Sehingga λmin =
• Sinar-X karakteristik
Apabila elektron yang dipercepat di atas (yang memiliki energi cukup tinggi) mampu masuk ke kulit terdalam dari atom logam dan menyebabkan transisi elektron-elektron logam dari tingkat energi ke tingkat energi rendah, maka akan dipancarkan sinar-X karakteristik. Spektrum yang dihasilkan dari peristiwa ini adalah spektrum garis (diskrit).










Cahaya biasa mampu melepaskan elektron dari logam-logam alkali.
Hasil-hasil percobaan yang seksama menunjukkan bahwa :
a. Makin besar intensitas cahaya, semakin banyak elektron-elektron yang diemisikan.
b. Kecepatan elektron-elektron yang diemisikan hanya bergantung kepada frekwensi cahaya, makin besar frekwensi cahaya makin besar pula kecepatan elektron yang diemisikan.
c. Pada frekwensi cahaya yang tertentu (frekwensi batas) emisi elektron dari logam tertentu sama.
Peristiwa-peristiwa di atas tidak dapat diungkap dengan teori cahaya Huygens.
Pada tahun 1901, Planck mengetengahkan hipotesa bahwa cahaya (gelombang elektromagnetik) harus dianggap sebagai paket-paket energi yang disebut foton.
Cahaya yang intensitasnya besar memiliki foton dalam jumlah yang sangat banyak. Tiap-tiap foton hanya melepaskan satu elektron. Kiranya mudah dipahami bahwa semakin besar intensitas cahaya semakin banyak pula elektron-elektron yang diemisikan.
Tiap foton yang datang pada logam, sebagian energinya digunakan untuk melepaskan elektron dan sebagian menjadi energi kinetik elektron. Jika energi yang diperlukan untuk melepaskan elektron sebesar a dan energi yang menjadi energi kinetik sebesar Ek maka dapat ditulis persamaan :



Dari persamaan nampak jelas, makin besar frekwensi cahaya, makin besar kecepatan yang diperoleh elektron.
Bila frekwensi cahaya sedemikian sehingga h.f = a, maka foton itu hanya mampu melepaskan elektron tanpa memberi energi kinetik pada elektron. Penyinaran dengan cahaya yang frekwensi lebih kecil tidak akan menunjukkan gejala foto listrik.
Sifat Kembar Cahaya.
Gejala-gejala interferensi dan difraksi memperlihatkan sifat gelombang yang dimiliki cahaya, dilain pihak cahaya memperlihatkan sifat sebagai paket-paket energi (foton).
Timbul suatu gagasan apakah foton itu dapat diartikan sebagai partikel-partikel.
Untuk menjawab pertanyaan ini A.H. Compton mempelajari tumbukan-tumbukan antara foton dengan elektron.
Kesimpulan yang diperolehnya menunjukkan bahwa foton dapat berlaku sebagai partikel dengan momentum.



Tidak ada keraguan lagi bahwa cahaya memiliki sifat kembar, sebagai gelombang dan sebagai partikel.
























LATIHAN SOAL

1. Berapa joule energi foton yang panjang gelombangnya 6000 Angstrom. Tetapan Planck = 6,6 .10 –34 joule . det.

2. Berkas cahaya 5000 Angstrom didatangkan pada logam Kalium. Untuk melepaskan elektron dari logam tersebut dipergunakan energi 2 eV. Berapa energi kinetik elektron yang dibebaskan ?

3. Untuk membebaskan elektron dari Natrium diperlukan tenaga 2,14 eV.
a. Berapakah panjang gelombang cahaya yang dapat melepaskan elektron dari logam Natrium.
b. Dapatkah sinar-sinar yang panjang gelombangnya 0,4 digunakan untuk membebaskan elektron dari logam tersebut ?

4. Berapakah panjang gelombang elektron yang bergerak dengan kecepatan 9 .107 m/det.
5. Berapa energi foton sinar X yang panjang gelombangnya 1 h = 6,6 .10-34 joule.det

6. Berapa panjang gelombang-gelombang elektromagnetik yang energi fotonnya 2,8 .10 –19 joule.

7. Sebuah partikel dengan muatan q dan massa m dipercepat dari keadaan diam melalui beda potensial V.
a. Tentukan panjang gelombang de Broglie.
b. Hitung jika partikel adalah sebuah elektron dan V = 50 Volt.



==========O0O==========





GELOMBANG ELEKTROMAGNETIK

Gelombang Elektromagnetik adalah gelombang yang dapat merambat walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.
Ciri-ciri gelombang elektromagnetik :
Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang elektromagnetik adalah sebagai berikut:
1. Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
2. Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.
3. Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
4. Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
5. Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.
Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.
SUMBER GELOMBANG ELEKTROMAGNETIK
1. Osilasi listrik.
2. Sinar matahari  menghasilkan sinar infra merah.
3. Lampu merkuri  menghasilkan ultra violet.
4. Penembakan elektron dalam tabung hampa pada keping logam  menghasilkan sinar X (digunakan untuk rontgen).
Inti atom yang tidak stabil menghasilkan sinar gamma.

SPEKTRUM GELOMBANG ELEKTROMAGNETIK



Susunan semua bentuk gelombang elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.

Contoh spektrum elektromagnetik
Gelombang Radio
Gelombang radio dikelompokkan menurut panjang gelombang atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar. Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi.

Gelombang mikro
Gelombang mikro (mikrowaves) adalah gelombang radio dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk memasak makanan dengan cepat dan ekonomis.
Gelombang mikro juga dimanfaatkan pada pesawat RADAR (Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3 X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan penerimaan.

Sinar Inframerah
Sinar inframerah meliputi daerah frekuensi 1011Hz sampai 1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung spektrum merah. Sinar yang tidak dilihat tetapi dapat dideteksi di atas spektrum merah itu disebut radiasi inframerah. Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan warna benda.

Cahaya tampak
Cahaya tampak sebagai radiasi elektromagnetik yang paling dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4 x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah. Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada bidang telekomunikasi dan kedokteran.

Sinar ultraviolet
Sinar ultraviolet mempunyai frekuensi dalam daerah 1015 Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan makluk hidup di bumi.

Sinar X
Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal beberapa sentimeter dan pelat aluminium setebal 1 cm.

Sinar Gamma
Sinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar, yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh.

Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari :
a. Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.
a. Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.


a. Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.

d. Ultraviolet

Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.

e. Sinar X

Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.



GELOMBANG ELEKTROMAGNETIK


Bila dalam kawat PQ terjadi perubahan-perubahan tegangan baik besar maupun arahnya, maka dalam kawat PQ electron bergerak bolak-balik, dengan kata lain dalam kawat PQ terjadi getaran listrik. Perubahan tegangan menimbulkan perubahan medan listrik dalam ruangan disekitar kawat, sedangkan perubahan arus listrik menimbulkan perubahan medan magnet. Perubahan medan listrik dan medan magnet itu merambat ke segala jurusan. Karena rambatan perubahan medan magnet dan medan listrik secara periodik maka rambatan perubahan medan listrik dan medan magnet lazim disebut : GELOMBANG ELEKTROMAGNETIK. Percobaan-percobaan yang teliti membawa kita
pada kesimpulan :
1. Pola gelombang elektromagnetik sama dengan pola gelombang transversal dengan vektor perubahan medan listrik tegak lurus pada vektor perubahan medan magnet.



2. Gelombang elektromagnetik menunjukkan gejala-gejala : Pemantulan, pembiasan, difraksi, polarisasi seperti halnya pada cahaya.
3. Diserap oleh konduktor dan diteruskan oleh isolator. Gelombang elektromagnetik lahir sebagai paduan daya imajinasi dan ketajaman akal pikiran berlandaskan keyakinan akan keteraturan dan kerapian aturan-aturan alam.
Hasil-hasil percobaan yang mendahuluinya telah mengungkapkan tiga aturan gejala
kelistrikan :
Hukum Coulomb : Muatan listrik menghasilkan medan listrik yang kuat.
Hukum Biot-Savart : Aliran muatan (arus) listrik menghasilkan medan magnet
disekitarnya.
Hukum Faraday : Perubahan medan magnet (B) dapat menimbulkan medan listrik (E).
Didorong oleh keyakinan atas keteraturan dan kerapian hukum-hukum alam, Maxwell
berpendapat : Masih ada kekurangan satu aturan kelistrikan yang masih belum terungkap secara empirik. Jika perubahan medan magnet dapat menimbulkan perubahan medan listrik maka
perubahan medan listrik pasti dapat menimbulkan perubahan medan magnet, demikianlah
keyakinan Maxwell. Dengan pengetahuan matematika yang dimilikinya, secara cermat Maxwell membangun teori yang dikenal sebagai teori gelombang elektromagnetik. Baru setelah bertahun-tahun Maxwell tiada, teorinya dapat diuji kebenarannya melalui percobaan-percobaan.Menurut
perhitungan secara teoritik, kecepatan gelombang elektromagnetik hanya bergantung pada
permitivitasdan permeabilitas .



Dengan memasukkan W/A.m
Diperoleh nilai c = 3.108 m/s, nilai yang sama dengan kecepatan cahaya. Oleh sebab itu Maxwell mempunyai cukup alasan untuk menganggap cahaya adalah Gelombang Elektromagnetik.
Oleh karena itu konsep gelombang elektromagnetik ini merupakan penyokong teori HUYGENS tentang cahaya sebagai gerak gelombang.

INTENSITAS GELOMBANG ELEKTROMAGNETIK

Energi rata-rata per satuan luas yang dirambatkan oleh gelombang elektromagnetik disebut dengan intensitas gelombang elektromagnetik. Intensitas tersebut sebanding dengan
harga maksimum medan magnet (B) dan sebanding pula dengan harga maksimun medan
listriknya (E).


Benda hitam
Dalam fisika, benda hitam (bahasa Inggris black body) adalah obyek yang menyerap seluruh radiasi elektromagnetik yang jatuh kepadanya. Tidak ada radiasi yang dapat keluar atau dipantulkannya. Namun demikian, dalam fisika klasik, secara teori benda hitam haruslah juga memancarkan seluruh panjang gelombang energi yang mungkin, karena hanya dari sinilah energi benda itu dapat diukur.
Meskipun namanya benda hitam, dia tidaklah harus benar-benar hitam karena dia juga memancarkan energi. Jumlah dan jenis radiasi elektromagnetik yang dipancarkannya bergantung pada suhu benda hitam tersebut. Benda hitam dengan suhu di bawah sekitar 700 Kelvin hampir semua energinya dipancarkan dalam bentuk gelombang inframerah, sangat sedikit dalam panjang gelombang tampak. Semakin tinggi temperatur, semakin banyak energi yang dipancarkan dalam panjang gelombang tampak dimulai dari merah, jingga, kuning dan putih.
Istilah "benda hitam" pertama kali diperkenalkan oleh Gustav Robert Kirchhoff pada tahun 1862. Cahaya yang dipancarkan oleh benda hitam disebut radiasi benda hitam


Ketika temperatur berkurang, puncak dari kurva radiasi benda hitam bergerak ke intensitas yang lebih rendah dan panjang gelombang yang lebih panjang. Grafik radiasi benda hitam ini dibandingkan dengan model klasik dari Rayleigh dan Jeans.
Dalam laboratorium, benda yang paling mendekati radiasi benda hitam adalah radiasi dari sebuah lubang kecil pada sebuah rongga. Cahaya apa pun yang memasuki lubang ini akan dipantulkan dan energinya diserap oleh dinding-dinding rongga berulang kali, tanpa memedulikan bahan dinding dan panjang gelombang radiasi yang masuk (selama panjang gelombang tersebut lebih kecil dibandingkan dengan diameter lubang). Lubang ini (bukan rongganya) adalah pendekatan dari sebuah benda hitam. Jika rongga dipanaskan, spektrum yang dipancarkan lubang akan merupakan spektrum kontinu dan tidak bergantung pada bahan pembuat rongga. Pancaran radiasinya mengikuti suatu kurva umum (lihat gambar). Berdasarkan hukum radiasi termal dari Kirchhoff kurva ini hanya bergantung pada suhu dinding rongga, dan setiap benda hitam akan mengikuti kurva ini.
Spektrum yang teramati tidak dapat dijelaskan dengan teori elektromagnetik klasik dan mekanika statistik. Teori ini meramalkan intensitasi yang tinggi pada panjang gelombang rendah (yaitu, frekuensi tinggi); suatu ramalan yang dikenal sebagai bencana ultraungu.
Masalah teoretis ini dipecahkan oleh Max Planck, yang menganggap bahwa radiasi elektromagnetik dapat merambat hanya dalam paket-paket, atau kuanta (lihat bencana ultraungu untuk rinciannya). Gagasan ini belakangan digunakan oleh Einstein untuk menjelaskan efek fotolistrik. Perkembangan teoretis ini akhirnya menyebabkan digantikannya teori elektromagnetik klasik dengan mekanika kuantum. Saat ini, paket-paket tersebut disebut foton.



Radiasi Benda Hitam




Radiasi BENDA HITAM
Teori kuantum diawali oleh fenomena radiasi benda hitam. Istilah “benda hitam” pertama kali diperkenalkan oleh Gustav Robert Kirchhoff pada tahun 1862. Dalam Fisika, benda hitam (atau blackbody) adalah sebutan untuk benda yang mampu menyerap kalor radiasi (radiasi termal) dengan baik. Radiasi termal yang diserap akan dipancarkan kembali oleh benda hitam dalam bentuk radiasi gelombang elektromagnetik, sama seperti gelombang radio ataupun gelombang cahaya. Untuk zat padat dan cair, radiasi gelombangnya berupa spektrum kontinu, dan untuk gas berupa spektrum garis. Meskipun demikian, sebenarnya secara teori dalam Fisika klasik, benda hitam memancarkan setiap panjang gelombang energi yang mungkin agar supaya energi dari benda tersebut dapat diukur. Temperatur benda hitam itu sendiri berpengaruh terhadap jumlah dan jenis radiasi elektromagnetik yang dipancarkannya. Benda hitam bersuhu di bawah 700 Kelvin dapat memancarkan hampir semua energi termal dalam bentuk gelombang inframerah, sehingga sangat sedikit panjang gelombang cahaya tampak. Jadi, semakin tinggi suhu benda hitam, semakin banyak energi yang dapat dipancarkan dengan pancaran radiasi dimulai dari panjang gelombang merah, jingga, kuning hingga putih.
Meskipun namanya benda hitam, objek tersebut tidak harus selalu berwarna hitam. Sebuah benda hitam dapat mempunyai cahayanya sendiri sehingga warnanya bisa lebih terang, walaupun benda itu menyerap semua cahaya yang datang padanya. Sedangkan temperatur dari benda hitam itu sendiri berpengaruh terhadap jumlah dan jenis radiasi elektromagnetik yang dipancarkannya.
Dalam percobaan Fisika sederhana, benda atau objek yang paling mirip radiasi benda hitam adalah radiasi dari sebuah lubang kecil pada sebuah rongga. Dengan mengabaikan bahan pembuat dinding dan panjang gelombang radiasi yang masuk, maka selama panjang gelombang datang lebih kecil dibandingkan dengan diameter lubang, cahaya yang masuk ke lubang itu akan dipantulkan oleh dinding rongga berulang kali serta semua energinya diserap, yang selanjutnya akan dipancarkan kembali sebagai radiasi gelombang elektromagnetik melalui lubang itu juga. Lubang pada rongga inilah yang merupakan contoh dari sebuah benda hitam. Temperatur dari benda itu akan terus naik apabila laju penyerapan energinya lebih besar dari laju pancarannya, sehingga pada akhirnya benda hitam itu mencapai temperatur kesetimbangan. Keadaan ini dinamakam dengan setimbang termal (setimbang termodinamik).



Blackbody Radiation
Dari data eksperimen terhadap radiasi benda hitam, diperoleh bahwa spektrum radiasi benda hitam berupa spektrum kontinu dengan tingkat kebersinaran (intensitas radiasi) dari masing-masing spektral tidak sama kuat. Pada suhu tertentu, intensitas cahaya yang diradiasikan akan terus bertambah hingga mencapai maksimum pada panjang gelombang tertentu. Dan Pancaran radiasi benda hitam itu akan mengikuti suatu kurva berikut:

Kurva Radiasi Benda Hitam


Dari kurva di atas, terbaca bahwa dengan naiknya temperatur benda hitam, puncak-puncak spektrum akan bergeser ke arah panjang gelombang yang semakin kecil (gambar a) atau puncak-puncak spektrum akan bergeser ke arah frekuensi yang semakin besar (gambar b).
Hubungan empiris sederhana antara panjang gelombang yang dipancarkan untuk intensitas maksimum (lm) dengan suhu mutlak (T) sebuah benda yang dikenal sebagai hukum pergeseran wien, yaitu :

dengan C = konstanta Wien (2,899 x 10-3 mK)
Tahun 1879, seorang ahli fisika Austria, Josef Stefan membuktikan bahwa intensitas radiasi total (P/A) oleh suatu benda hitam panas adalah sebanding dengan pangkat empat dari suhu mutlaknya. Bentuk persamaan empirisnya adalah sebagai berikut:

P adalah daya radiasi (watt = W), A adalah luas permukaan benda, T adalah suhu mutlak benda, σ = 5,67 x 10-8 W m-3 K-4
Teori elektromagnetik klasik maupun mekanika statistik tidak dapat menjelaskan spektrum yang teramati pada radiasi benda hitam. Teori tersebut hanya dapat memprediksi intensitas yang tinggi dari panjang gelombang rendah atau dikenal sebagai bencana ultraungu. Namun kemudian, Max Planck berhasil memecahkan masalah ini. Max Planck menjelaskan bahwa radiasi elektromagnetik hanya dapat merambat dalam bentuk paket-paket energi atau kuanta yang dinamakan foton. Gagasan Planck ini kemudian berkembang menjadi teori baru dalam fisika yang disebut Teori Kuantum. Dengan teori ini, kemudian Einstein berhasil menjelaskan peristiwa yang dikenal dengan nama efek foto listrik, yakni pemancaran elekton dari permukaan logam karena logam tersebut disinari cahaya. Perkembangan teoritis ini menjadi penyebab digantikannya teori elektromagnetik klasik dengan mekanika kuantum.

Kamis, 09 Juni 2011

* ~ MacaM-MacaM Alat Optik ~*

Alat Optik


Cermin dan lensa serta prinsip kerjanya memberikan sarana pemahaman bagi pemanfaatannya untuk mempermudah dan membantu kehidupan manusia. Alat-alat yang bekerja berdasarkan prinsip optik (cermin dan lensa) digolongkan sebagai alat optik.

Mata
Salah satu alat optik alamiah yang merupakan salah satu anugerah dari Sang Pencipta adalah mata. Di dalam mata terdapat lensa kristalin yang terbuat dari bahan bening, berserat, dan kenyal. Lensa kristalin atau lensa mata berfungsi mengatur pembiasan yang disebabkan oleh cairan di depan lensa. Cairan ini dinamakan aqueous humor. Intensitas cahaya yang masuk ke mata diatur oleh pupil.

Bagian-bagian mata
Cahaya yang masuk ke mata difokuskan oleh lensa mata ke bagian belakang mata yang disebut retina. Bentuk bayangan benda yang jatuh di retina seolah-olah direkam dan disampaikan ke otak melalui saraf optik. Bayangan inilah yang sampai ke otak dan memberikan kesan melihat benda kepada mata. Jadi, mata dapat melihat objek dengan jelas apabila bayangan benda (bayangan nyata) terbentuk tepat di retina.
Lensa mata merupakan lensa yang kenyal dan fleksibel yang dapat menyesuaikan dengan objek yang dilihat. Karena bayangan benda harus selalu difokuskan tepat di retina, lensa mata selalu berubah-ubah untuk menyesuaikan objek yang dilihat. Kemampuan mata untuk menyesuaikan diri terhadap objek yang dilihat dinamakan daya akomodasi mata.

daya akomodasi mata





Saat mata melihat objek yang dekat, lensa mata akan berakomodasi menjadi lebih cembung agar bayangan yang terbentuk jatuh tepat di retina. Sebaliknya, saat melihat objek yang jauh, lensa mata akan menjadi lebih pipih untuk memfokuskan bayangan tepat di retina.
Titik terdekat yang mampu dilihat oleh mata dengan jelas disebut titik dekat mata (punctum proximum/PP). Pada saat melihat benda yang berada di titik dekatnya, mata dikatakan berakomodasi maksimum. Titik dekat mata disebut juga dengan jarak baca normal karena jarak yang lebih dekat dari jarak ini tidak nyaman digunakan untuk membaca dan mata akan terasa lelah. Jarak baca normal atau titik dekat mata adalah sekitar 25 cm.
Adapun, titik terjauh yang dapat dilihat oleh mata dengan jelas disebut titik jauh mata (punctum remotum/PR). Pada saat melihat benda yang berada di titik jauhnya, mata berada dalam kondisi tidak berakomodasi. Jarak titik jauh mata normal adalah di titik tak hingga (~).
Rabun Jauh dan Cara Memperbaikinya
Orang yang menderita rabun jauh atau miopi tidak mampu melihat dengan jelas objek yang jauh tapi tetap mampu melihat dengan jelas objek di titik dekatnya (pada jarak 25 cm). titik jauh mata orang yang menderita rabun jauh berada pada jarak tertentu (mata normal memiliki titik jauh tak berhingga).
Rabun jauh dapat diperbaiki dengan menggunakan lensa divergen yang bersifat menyebarkan (memencarkan) sinar. Lensa divergen atau lensa cekung atau lensa negatif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.

miopi dikoreksi menggunakan lensa negatif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami rabun jauh dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak tak hingga (titik jauh mata normal), dan s’ adalah titik jauh mata (PR). Prinsip dasarnya adalah lensa negatif digunakan untuk memindahkan (memajukan) objek pada jarak tak hingga agar menjadi bayangan di titik jauh mata tersebut sehingga mata dapat melihat objek dengan jelas.
Rabun Dekat dan Cara Memperbaikinya
Orang yang menderita rabun dekat atau hipermetropi tidak mampu melihat dengan jelas objek yang terletak di titik dekatnya tapi tetap mampu melihat dengan jelas objek yang jauh (tak hingga). Titik dekat mata orang yang menderita rabun dekat lebih jauh dari jarak baca normal (PP > 25 cm).
Cacat mata hipermetropi dapat diperbaiki dengan menggunakan lensa konvergen yang bersifat mengumpulkan sinar. Lensa konvergen atau lensa cembung atau lensa positif dapat membantu lensa mata agar dapat memfokuskan bayangan tepat di retina.

hipermetropi dikoreksi menggunakan lensa positif
Jarak fokus lensa dan kuat lensa yang digunakan untuk memperbaiki mata yang mengalami hipermetropi dapat ditentukan berdasarkan persamaan lensa tipis dan rumus kuat lensa.
Di sini jarak s adalah jarak titik dekat mata normal (25 cm), dan s’ adalah titik dekat mata (PP). Prinsip dasarnya adalah lensa positif digunakan untuk memindahkan (memundurkan) objek pada jarak baca normal menjadi bayangan di titik dekat mata tersebut sehingga mata dapat melihat objek dengan jelas.
Kaca Pembesar
Kaca pembesar atau lup digunakan untuk melihat benda kecil yang tidak bisa dilihat dengan mata secara langsung. Lup menggunakan sebuah lensa cembung atau lensa positif untuk memperbesar objek menjadi bayangan sehingga dapat dilihat dengan jelas.

Bayangan yang dibentuk oleh lup bersifat maya, tegak, dan diperbesar. Untuk mendapatkan bayangan semacam ini objek harus berada di depan lensa dan terletak diantara titik pusat O dan titik fokus F lensa. untuk menghasilkan bayangan yang diinginkan, lup dapat digunakan dalam dua macam cara, yaitu dengan mata berakomodasi maksimum dan dengan mata tidak berakomodasi.
Lup dapat digunakan dengan mata berakomodasi maksimum untuk mendapatkan perbesaran bayangan yang diinginkan. Agar mata berakomodasi maksimum, bayangan yang terbentuk harus tepat berada di titik dekat mata (s’ = sn = jarak titik dekat mata).

Perbesaran bayangan yang dihasilkan oleh lup dengan mata berakomodasi maksimum adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Menggunakan lup dalam keadaan mata berakomodasi maksimum membuat mata menjadi cepat lelah. Agar mata relaks dan tidak cepat lelah, lup digunakan dalam keadaan mata tidak berakomodasi. Untuk mendapatkan perbesaran bayangan yang diinginkan dalam keadaan mata tidak berakomodasi, bayangan yang terbentuk harus berada sangat jauh di depan lensa (jarak tak hingga). dalam hal ini objek harus berada di titik fokus lensa (s = f).
Perbesaran bayangan yang dihasilkan oleh lup dengan mata tidak berakomodasi adalah
Dimana P adalah perbesaran lup, sn adalah jarak titik dekat mata (sn = 25 cm untuk mata normal), dan f adalah jarak fokus lup.
Mikroskop
Perbesaran bayangan yang dihasilkan dengan menggunakan lup yang hanya menggunakan sebuah lensa cembung kurang maksimal dan terbatas. Untuk mendapatkan perbesaran yang lebih besar diperlukan susunan alat optik yang lebih baik. Perbesaran yang lebih besar dapat diperoleh dengan membuat susunan dua buah lensa cembung. Susunan alat optik ini dinamakan mikroskop yang dapat menghasilkan perbesaran sampai lebih dari 20 kali.
Sebuah mikroskop terdiri atas dua buah lensa cembung (lensa positif). lensa yang dekat dengan objek (benda) dinamakan lensa objektif, sedangkan lensa yang dekat mata dinamakan lensa okuler. Jarak fokus lensa okuler lebih besar daripada jarak fokus lensa objektif.

mikroskop dan bagian-bagiannya



pembentukan bayangan pada mikroskop
Objek yang ingin diamati diletakkan di depan lensa objektif di antara titik Fob dan 2Fob. Bayangan yang terbentuk oleh lensa objektif adalah I1 yang berada di belakang lensa objektif dan di depan lensa okuler. Bayangan ini bersifat nyata, terbalik, dan diperbesar. Bayangan I1 akan menjadi benda bagi lensa okuler dan terletak di depan lensa okuler antara pusat optik O dan titik fokus okuler Fok. Di sini lensa okuler akan berfungsi sebagai lup dan akan terbentuk bayangan akhir I2 di depan lensa okuler. Bayangan akhir I2 yang terbentuk bersifat maya, diperbesar, dan terbalik terhadap objek semula.
Perbesaran yang dihasilkan mikroskop adalah gabungan dari perbesaran lensa objektif dan perbesaran lensa okuler. Perbesaran lensa objektif mikroskop adalah
Dimana Pob adalah perbesaran lensa objektif, s’ob adalah jarak bayangan lensa objektif dan sob adalah jarak objek di depan lensa objektif.
Adapun perbesaran lensa okuler mikroskop sama dengan perbesaran lup, yaitu sebagai berikut.


untuk mata berakomodasi maksimum
untuk mata tidak berakomodasi

Dimana Pok adalah perbesaran lensa okuler, sn adalah jarak titik dekat mata (untuk mata normal sn = 25 cm), dan fok adalah jarak fokus lensa okuler.
Perbesaran total mikroskop adalah hasil kali perbesaran lensa objektif dan perbesaran lensa okuler. Jadi,
P = Pob × Pok
Hal-hal penting yang perlu diketahui berkaitan dengan mikroskop:
(1) jarak antara lensa objektif dan lensa okuler disebut juga panjang tabung (d). panjang tabung sama dengan penjumlahan jarak bayangan yang dibentuk lensa objektif (s’ob) dengan jarak benda (bayangan pertama) ke lensa okuler (sok).
d = s’ob + sok
(2) menggunakan mikroskop dengan mata berakomodasi maksimum berarti letak bayangan akhir berada di titik dekat mata di depan lensa okuler. Jadi, dapat dituliskan
s’ok = −sn
(3) menggunakan mikroskop dengan mata tidak berakomodasi berarti jarak benda di depan lensa okuler (sok ) berada tepat di titik fokus lensa okuler (fok). Jadi, dapat dituliskan
sok = fok


Teropong Bintang
Bintang-bintang di langit yang letaknya sangat jauh tidak dapat dilihat secara langsung oleh mata. Teropong atau teleskop dapat digunakan untuk melihat bintang atau objek yang letaknya sangat jauh.
Teropong terdiri atas dua lensa cembung, sebagaimana mikroskop. Pada teropong jarak fokus lensa objektif lebih besar daripada jarak fokus lensa okuler (fob > fok). Teropong digunakan dengan mata tidak berakomodasi agar tidak cepat lelah karena teropong digunakan untuk mengamati bintang selama berjam-jam. Dengan mata tidak berakomodasi, bayangan lensa objektif harus terletak di titik fokus lensa okuler. Dengan demikian, panjang teropong (atau jarak antara kedua lensa) adalah
d = fob + fok
dimana fob adalah jarak fokus lensa objektif dan fok adalah jarak fokus lensa okuler.